Package

scalaz

Permalink

package scalaz

Linear Supertypes
AnyRef, Any
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. scalaz
  2. AnyRef
  3. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Type Members

  1. type <~[+F[_], -G[_]] = NaturalTransformation[G, F]

    Permalink
  2. type =?>[-E, +A] = Kleisli[Option, E, A]

    Permalink
  3. type @>[A, B] = LensFamily[A, A, B, B]

    Permalink
  4. type @?>[A, B] = PLensFamily[A, A, B, B]

    Permalink
  5. type @@[+T, Tag] = T with Tagged[Tag]

    Permalink
  6. type Alternative[F[_]] = ApplicativePlus[F]

    Permalink
  7. type Cont[R, +A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, R, A]

    Permalink
  8. type ContT[M[+_], R, +A] = IndexedContsT[scalaz.Id.Id, M, R, R, A]

    Permalink
  9. type Conts[W[+_], R, +A] = IndexedContsT[W, scalaz.Id.Id, R, R, A]

    Permalink
  10. type ContsT[W[+_], M[+_], R, +A] = IndexedContsT[W, M, R, R, A]

    Permalink
  11. type FirstOf[A] = A with Tagged[FirstVal]

    Permalink
  12. type FirstOption[A] = Option[A] with Tagged[First]

    Permalink
  13. type IRWS[-R, +W, -S1, +S2, +A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  14. type IRWST[F[+_], -R, +W, -S1, +S2, +A] = IndexedReaderWriterStateT[F, R, W, S1, S2, A]

    Permalink
  15. type IndexedCont[+R, -O, +A] = IndexedContsT[scalaz.Id.Id, scalaz.Id.Id, R, O, A]

    Permalink
  16. type IndexedContT[M[+_], +R, -O, +A] = IndexedContsT[scalaz.Id.Id, M, R, O, A]

    Permalink
  17. type IndexedConts[W[+_], +R, -O, +A] = IndexedContsT[W, scalaz.Id.Id, R, O, A]

    Permalink
  18. type IndexedReaderWriterState[-R, +W, -S1, +S2, +A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S1, S2, A]

    Permalink
  19. type IndexedState[-S1, +S2, +A] = IndexedStateT[scalaz.Id.Id, S1, S2, A]

    Permalink
  20. type IndexedStore[+I, -A, +B] = IndexedStoreT[scalaz.Id.Id, I, A, B]

    Permalink
  21. type LastOf[A] = A with Tagged[LastVal]

    Permalink
  22. type LastOption[A] = Option[A] with Tagged[Last]

    Permalink
  23. type Lens[A, B] = LensFamily[A, A, B, B]

    Permalink
  24. type MaxOf[A] = A with Tagged[MaxVal]

    Permalink
  25. type MaxOption[A] = Option[A] with Tagged[Max]

    Permalink
  26. type MinOf[A] = A with Tagged[MinVal]

    Permalink
  27. type MinOption[A] = Option[A] with Tagged[Min]

    Permalink
  28. type PIndexedState[-S1, +S2, +A] = IndexedStateT[scalaz.Id.Id, S1, S2, Option[A]]

    Permalink
  29. type PIndexedStateT[F[+_], -S1, +S2, +A] = IndexedStateT[F, S1, S2, Option[A]]

    Permalink
  30. type PLens[A, B] = PLensFamily[A, A, B, B]

    Permalink
  31. type PState[S, +A] = IndexedStateT[scalaz.Id.Id, S, S, Option[A]]

    Permalink
  32. type PStateT[F[+_], S, +A] = IndexedStateT[F, S, S, Option[A]]

    Permalink
  33. type RWS[-R, +W, S, +A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  34. type RWST[F[+_], -R, +W, S, +A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  35. type Reader[-E, +A] = Kleisli[scalaz.Id.Id, E, A]

    Permalink
  36. type ReaderT[F[+_], -E, +A] = Kleisli[F, E, A]

    Permalink
  37. type ReaderWriterState[-R, +W, S, +A] = IndexedReaderWriterStateT[scalaz.Id.Id, R, W, S, S, A]

    Permalink
  38. type ReaderWriterStateT[F[+_], -R, +W, S, +A] = IndexedReaderWriterStateT[F, R, W, S, S, A]

    Permalink
  39. type State[S, +A] = IndexedStateT[scalaz.Id.Id, S, S, A]

    Permalink
  40. type StateT[F[+_], S, +A] = IndexedStateT[F, S, S, A]

    Permalink
  41. type Store[A, +B] = IndexedStoreT[scalaz.Id.Id, A, A, B]

    Permalink
  42. type StoreT[F[+_], A, +B] = IndexedStoreT[F, A, A, B]

    Permalink
  43. type Tagged[T] = AnyRef { type Tag = T }

    Permalink
  44. type Unwriter[+W, +A] = UnwriterT[scalaz.Id.Id, W, A]

    Permalink
  45. type ValidationNel[+E, +X] = Validation[NonEmptyList[E], X]

    Permalink
  46. type Writer[+W, +A] = WriterT[scalaz.Id.Id, W, A]

    Permalink
  47. type |-->[+A, B] = IndexedStoreT[scalaz.Id.Id, B, B, A]

    Permalink
  48. type |>=|[G[_], F[_]] = MonadPartialOrder[G, F]

    Permalink
  49. type ~>[-F[_], +G[_]] = NaturalTransformation[F, G]

    Permalink
  50. type ~~>[-F[_, _], +G[_, _]] = BiNaturalTransformation[F, G]

    Permalink
  51. type = Any

    Permalink
  52. type = Nothing

    Permalink

Value Members

  1. val IRWS: IndexedReaderWriterState.type

    Permalink
  2. val IRWST: IndexedReaderWriterStateT.type

    Permalink
  3. val RWS: ReaderWriterState.type

    Permalink
  4. val RWST: ReaderWriterStateT.type

    Permalink
  5. implicit val idInstance: Traverse1[scalaz.Id.Id] with Each[scalaz.Id.Id] with Monad[scalaz.Id.Id] with Comonad[scalaz.Id.Id] with Cojoin[scalaz.Id.Id] with Distributive[scalaz.Id.Id] with Zip[scalaz.Id.Id] with Unzip[scalaz.Id.Id] with Cozip[scalaz.Id.Id]

    Permalink
  6. package syntax

    Permalink

Inherited from AnyRef

Inherited from Any

Ungrouped